Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.595
1.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747931

BACKGROUND: The goal of the study was to provide an individual and precise genetic and molecular biological basis for the early prevention, diagnosis, and treatment of local FH by analyzing the risk factors for the development of FH in Han and Mongolian patients in the Hulunbuir, comparing the lipid levels of FH patients of the two ethnicities, and assessing differences in mutations to two genes between the two ethnic groups. METHODS: Twenty cases each of Han Chinese and Mongolian healthy controls and fifty patients who each met the inclusion criteria from November 2021 to December 2022 in five general hospitals in Hulunbuir were selected. Multifactor logistic analysis was used to analyze the risk factors associated with the development of FH. We used t-tests to analyze statistical differences in lipid levels between the groups, and Sanger sequencing to detect the dis-tribution of common mutation sites of PCSK9 and APOB in all study subjects. The mutation rates and differences between regions and ethnic groups were summarized and compared. RESULTS: 1) Gender, age, alcohol consumption, dietary status, and a family history of FH were risk factors associated with the development of FH. 2) TC, LDL-C, and APOB were significantly higher in Mongolian cases than Han cases (p < 0.05). sdLDL-C was not statistically different between the two ethnicities (p > 0.05). 3) We detected four (8%) heterozygous mutations at the PCSK9 gene E670G mutation site in the Han case group and a total of nine (18%) mutations at this site in the Mongolian cases, including one (2%) homozygous and eight (16%) heterozygous mutations. One case of a heterozygous mutation was detected in the Mongolian control group. We detected a total of ten (20%) mutations at the APOB gene rs1367117 mutation site in the Han case group, including eight (16%) heterozygous and two (4%) homozygous mutations, 11 cases (22%) of heterozygous mutations in the Mongolian case group, two cases of heterozygous mutations in the Han control group, and one case of a heterozygous mutation in the Mongolian control group. 4) The D374Y and S127R mutation sites of PCSK9 and the R3500Q mutation site of APOB were not detected in any of the study subjects. CONCLUSIONS: The mutation sites of the PCSK9 and APOB genes in FH patients in Hulunbuir are different from other regions, and the mutation rate is higher than in other regions. Therefore, we recommend that the mutation sites of the PCSK9 and APOB genes described herein be used as clinical detection indicators to assist the diagnosis of FH in this region.


Apolipoprotein B-100 , Hyperlipoproteinemia Type II , Mutation , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Male , Female , Middle Aged , Risk Factors , China/epidemiology , Apolipoprotein B-100/genetics , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/ethnology , Hyperlipoproteinemia Type II/diagnosis , Asian People/genetics , Adult , Mongolia/epidemiology , Mongolia/ethnology , Case-Control Studies , Genetic Predisposition to Disease , Cholesterol, LDL/blood , Ethnicity/genetics , Aged
2.
Lipids Health Dis ; 23(1): 136, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715054

BACKGROUND: Familial hypercholesterolemia (FH) is one of the most common autosomal dominant diseases. FH causes a lifelong increase in low-density lipoprotein cholesterol (LDL-C) levels, which in turn leads to atherosclerotic cardiovascular disease. The incidence of FH is widely underestimated and undertreated, despite the availability and effectiveness of lipid-lowering therapy. Patients with FH have an increased cardiovascular risk; therefore, early diagnosis and treatment are vital. To address the burden of FH, several countries have implemented national FH screening programmes. The currently used method for FH detection in Lithuania is mainly based on opportunistic testing with subsequent cascade screening of index cases' first-degree relatives. METHODS: A total of 428 patients were included in this study. Patients with suspected FH are referred to a lipidology center for thorough evaluation. Patients who met the criteria for probable or definite FH according to the Dutch Lipid Clinic Network (DLCN) scoring system and/or had LDL-C > = 6.5 mmol/l were subjected to genetic testing. Laboratory and instrumental tests, vascular marker data of early atherosclerosis, and consultations by other specialists, such as radiologists and ophthalmologists, were also recorded. RESULTS: A total of 127/428 (30%) patients were genetically tested. FH-related mutations were found in 38.6% (n = 49/127) of the patients. Coronary artery disease (CAD) was diagnosed in 13% (n = 57/428) of the included patients, whereas premature CAD was found in 47/428 (11%) patients. CAD was diagnosed in 19% (n = 9/49) of patients with FH-related mutations, and this diagnosis was premature for all of them. CONCLUSIONS: Most patients in this study were classified as probable or possible FH without difference of age and sex. The median age of FH diagnosis was 47 years with significantly older females than males, which refers to the strong interface of this study with the LitHir programme. CAD and premature CAD were more common among patients with probable and definite FH, as well as those with an FH-causing mutation. The algorithm described in this study is the first attempt in Lithuania to implement a specific tool which allows to maximise FH detection rates, establish an accurate diagnosis of FH, excluding secondary causes of dyslipidaemia, and to select patients for cascade screening initiation more precisely.


Algorithms , Cholesterol, LDL , Hyperlipoproteinemia Type II , Receptors, LDL , Humans , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/blood , Lithuania/epidemiology , Male , Female , Middle Aged , Adult , Receptors, LDL/genetics , Cholesterol, LDL/blood , Genetic Testing/methods , Mass Screening/methods , Aged , Mutation , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood
4.
Medicine (Baltimore) ; 103(18): e38010, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701318

Accumulating evidences have indicated that lipid-lowering drugs have effect for the treatment of cancers. However, causal associations between lipid-lowering drugs and the risk of cancers are still unclear. In our study, we utilized single nucleotide polymorphisms of proprotein convertase subtilis kexin 9 (PCSK9) inhibitors and 3-hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitors and performed a drug target Mendelian randomization to explore the causal association between lipid-lowering drugs and the risk of cancers. Five regression methods were carried out, including inverse variance weighted (IVW) method, MR Egger, weighted median, simple mode and weighted mode methods, of which IVW method was considered as the main analysis. Our outcome dataset contained the risk of breast cancer (BC), colorectal cancer, endometrial cancer, gastric cancer (GC), hepatocellular carcinoma (HCC), lung cancer, esophageal cancer, prostate cancer (PC), and skin cancer (SC). Our results demonstrated that PCSK9 inhibitors were significant associated with a decreased effect of GC [IVW: OR = 0.482, 95% CI: 0.264-0.879, P = .017]. Besides, genetic inhibitions of HMGCR were significant correlated with an increased effect of BC [IVW: OR = 1.421, 95% CI: 1.056-1.911, P = .020], PC [IVW: OR = 1.617, 95% CI: 1.234-2.120, P = .0005] and SC [IVW: OR = 1.266, 95% CI: 1.022-1.569, P = .031]. For GC [IVW: OR = 0.559, 95% CI: 0.382-0.820, P = .0029] and HCC [IVW: OR = 0.241, 95% CI: 0.085-0.686, P = .0077], HMGCR inhibitors had a protective risk. Our method suggested that PCSK9 inhibitors were significant associated with a protective effect of GC. Genetic inhibitions of HMGCR were significant correlated with an increased effect of BC, PC and SC. Meanwhile, HMGCR inhibitors had a protective risk of GC and HCC. Subsequent studies still needed to assess potential effects between lipid-lowering drugs and the risk of cancers with clinical trials.


Hydroxymethylglutaryl CoA Reductases , Mendelian Randomization Analysis , Neoplasms , Polymorphism, Single Nucleotide , Proprotein Convertase 9 , Humans , Neoplasms/genetics , Neoplasms/epidemiology , Hydroxymethylglutaryl CoA Reductases/genetics , Female , PCSK9 Inhibitors , Hypolipidemic Agents/therapeutic use , Male , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
5.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731489

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Gallic Acid , Lipoproteins, LDL , Receptors, LDL , Humans , Gallic Acid/pharmacology , Receptors, LDL/metabolism , Hep G2 Cells , Lipoproteins, LDL/metabolism , ErbB Receptors/metabolism , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
6.
Atherosclerosis ; 392: 117529, 2024 May.
Article En | MEDLINE | ID: mdl-38583289

BACKGROUND: Mechanistic studies suggest that proprotein convertase subtilisin/kexin type 9 inhibitors can modulate inflammation. METHODS: Double-blind, placebo-controlled trial randomized 41 ASCVD subjects with type 2 diabetes with microalbuminuria and LDL-C level >70 mg/dL on maximum tolerated statin therapy received subcutaneous evolocumab 420 mg every 4 weeks or matching placebo. The primary outcomes were change in circulating immune cell transcriptional response, lipoproteins and blood viscosity at 2 weeks and 12 weeks. Safety was assessed in all subjects who received at least one dose of assigned treatment and analyses were conducted in the intention-to-treat population. RESULTS: All 41 randomized subjects completed the 2-week visit. Six subjects did not receive study medication consistently after the 2-week visit due to COVID-19 pandemic suspension of research activities. The groups were well-matched with respect to age, comorbidities, baseline LDL-C, white blood cell counts, and markers of systemic inflammation. Evolocumab reduced LDL-C by -68.8% (p < 0.0001) and -52.8% (p < 0.0001) at 2 and 12 weeks, respectively. There were no differences in blood viscosity at baseline nor at 2 and 12 weeks. RNA-seq was performed on peripheral blood mononuclear cells with and without TLR4 stimulation ("Stress" transcriptomics). "Stress" transcriptomics unmasked immune cell phenotypic differences between evolocumab and placebo groups at 2 and 12 weeks. CONCLUSIONS: This trial is the first to demonstrate that PCSK9 mAB with evolocumab can modulate circulating immune cell properties and highlights the importance of "stress" profiling of circulating immune cells that more clearly define immune contributions to ASCVD.


Antibodies, Monoclonal, Humanized , Cholesterol, LDL , Monocytes , PCSK9 Inhibitors , Proprotein Convertase 9 , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Female , Middle Aged , Double-Blind Method , Monocytes/drug effects , Monocytes/metabolism , Monocytes/immunology , Aged , Cholesterol, LDL/blood , Proprotein Convertase 9/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Anticholesteremic Agents/therapeutic use , Lipoproteins/blood , Treatment Outcome , COVID-19/blood , COVID-19/immunology , Blood Viscosity/drug effects
7.
J Chem Inf Model ; 64(9): 3923-3932, 2024 May 13.
Article En | MEDLINE | ID: mdl-38615325

The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.


Molecular Dynamics Simulation , Proprotein Convertase 9 , Protein Binding , Receptors, LDL , Receptors, LDL/metabolism , Receptors, LDL/chemistry , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/chemistry , Allosteric Regulation , Humans , Protein Conformation , Thermodynamics , PCSK9 Inhibitors
8.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648484

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Atherosclerosis , Endothelial Cells , Lamin Type A , Muscle, Smooth, Vascular , Progeria , Animals , Mice , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Progeria/metabolism , Progeria/genetics , Progeria/pathology , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
9.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38612519

Angiopoietin-like 3 (ANGPTL3) is a hepatokine acting as a negative regulator of lipoprotein lipase (LPL). Vupanorsen, an ANGPTL3 directed antisense oligonucleotide, showed an unexpected increase in liver fat content in humans. Here, we investigated the molecular mechanism linking ANGPTL3 silencing to hepatocyte fat accumulation. Human hepatocarcinoma Huh7 cells were treated with small interfering RNA (siRNA) directed to ANGPTL3, human recombinant ANGPTL3 (recANGPTL3), or their combination. Using Western blot, Oil Red-O, biochemical assays, and ELISA, we analyzed the expression of genes and proteins involved in lipid metabolism. Oil Red-O staining demonstrated that lipid content increased after 48 h of ANGPTL3 silencing (5.89 ± 0.33 fold), incubation with recANGPTL3 (4.08 ± 0.35 fold), or their combination (8.56 ± 0.18 fold), compared to untreated cells. This effect was also confirmed in Huh7-LX2 spheroids. A total of 48 h of ANGPTL3 silencing induced the expression of genes involved in the de novo lipogenesis, such as fatty acid synthase, stearoyl-CoA desaturase, ATP citrate lyase, and Acetyl-Coenzyme A Carboxylase 1 together with the proprotein convertase subtilisin/kexin 9 (PCSK9). Time-course experiments revealed that 6 h post transfection with ANGPTL3-siRNA, the cholesterol esterification by Acyl-coenzyme A cholesterol acyltransferase (ACAT) was reduced, as well as total cholesterol content, while an opposite effect was observed at 48 h. Under the same experimental conditions, no differences in secreted apoB and PCSK9 were observed. Since PCSK9 was altered by the treatment, we tested a possible co-regulation between the two genes. The effect of ANGPTL3-siRNA on the expression of genes involved in the de novo lipogenesis was not counteracted by gene silencing of PCSK9. In conclusion, our in vitro study suggests that ANGPTL3 silencing determines lipid accumulation in Huh7 cells by inducing the de novo lipogenesis independently from PCSK9.


Lipogenesis , Proprotein Convertase 9 , Humans , Lipogenesis/genetics , Subtilisins , Gene Silencing , RNA, Small Interfering/genetics , Cholesterol , Angiopoietins/genetics , Coenzyme A , Angiopoietin-Like Protein 3
11.
J Transl Med ; 22(1): 352, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622667

BACKGROUND: Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS: HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS: QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS: QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.


Atherosclerosis , Gastrointestinal Microbiome , HMGB1 Protein , Methylamines , Mice , Animals , Proprotein Convertase 9 , HMGB1 Protein/metabolism , Quinic Acid , Sterol Regulatory Element Binding Protein 1/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Lipid Metabolism , Mice, Knockout, ApoE , Atherosclerosis/pathology , Inflammation , Cholesterol , Apolipoproteins E/metabolism , Mice, Inbred C57BL
12.
Diabetes Metab Res Rev ; 40(4): e3793, 2024 May.
Article En | MEDLINE | ID: mdl-38661109

AIMS: The aims of the present study were to assess the effects of lipid-lowering drugs [HMG-CoA reductase inhibitors, proprotein convertase subtilisin/kexin type 9 inhibitors, and Niemann-Pick C1-Like 1 (NPC1L1) inhibitors] on novel subtypes of adult-onset diabetes through a Mendelian randomisation study. MATERIALS AND METHODS: We first inferred causal associations between lipid-related traits [including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), apolipoproteins A-I, and apolipoproteins B] and novel subtypes of adult-onset diabetes. The expression quantitative trait loci of drug target genes for three classes of lipid-lowering drugs, as well as genetic variants within or nearby drug target genes associated with LDL-C, were then utilised as proxies for the exposure of lipid-lowering drugs. Mendelian randomisation analysis was performed using summary data from genome-wide association studies of LDL-C, severe autoimmune diabetes, severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes. RESULTS: There was an association between HMGCR-mediated LDL-C and the risk of SIRD [odds ratio (OR) = 0.305, 95% confidence interval (CI) = 0.129-0.723; p = 0.007], and there was an association of PCSK9-mediated LDL-C with the risk of SIDD (OR = 0.253, 95% CI = 0.120-0.532; p < 0.001) and MOD (OR = 0.345, 95% CI = 0.171-0.696; p = 0.003). Moreover, NPC1L1-mediated LDL-C (OR = 0.109, 95% CI = 0.019-0.613; p = 0.012) and the increased expression of NPC1L1 gene in blood (OR = 0.727, 95% CI = 0.541-0.977; p = 0.034) both showed a significant association with SIRD. These results were further confirmed by sensitivity analyses. CONCLUSIONS: In summary, the different lipid-lowering medications have a specific effect on the increased risk of different novel subtypes of adult-onset diabetes.


Genome-Wide Association Study , Hypolipidemic Agents , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Adult , Hypolipidemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Membrane Transport Proteins/genetics , Age of Onset , Prognosis , PCSK9 Inhibitors , Male , Quantitative Trait Loci , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Female , Biomarkers/analysis , Polymorphism, Single Nucleotide
13.
Indian Heart J ; 76 Suppl 1: S108-S112, 2024 Mar.
Article En | MEDLINE | ID: mdl-38599725

Familial hypercholesterolemia is a common genetic disorder of autosomal inheritance associated with elevated LDL-cholesterol. It is estimated to affect 1:250 individuals in general population roughly estimated to be 5 million in India. The prevalence of FH is higher in young CAD patients (<55 years in men; <60 years in women). FH is underdiagnosed and undertreated. Screening during childhood and Cascade screening of family members of known FH patients is of utmost importance in order to prevent the burden of CAD. Early identification of FH patients and early initiation of the lifelong lipid lowering therapy is the most effective strategy for managing FH. FH management includes pharmaceutical agents (statins and non statin drugs) and lifestyle modification. Inspite of maximum dose of statin with or without Ezetimibe, if target levels of LDL-C are not achieved, Bempedoic acid, proprotein convertase subtilisin/kexin type 9 (PCSK9) Inhibitors/Inclisiran can be added.


Anticholesteremic Agents , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperlipoproteinemia Type II , Male , Humans , Female , Proprotein Convertase 9/therapeutic use , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
14.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600469

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Genes, MHC Class II , Immunotherapy , Neoplasms , Proprotein Convertase 9 , Proprotein Convertases , Animals , Mice , Histocompatibility Antigens , Lipoproteins, LDL , Neoplasms/genetics , Neoplasms/therapy , Proprotein Convertase 9/metabolism , Proprotein Convertases/antagonists & inhibitors , Receptors, LDL/genetics , Tumor Microenvironment
15.
G Ital Cardiol (Rome) ; 25(5): 318-326, 2024 May.
Article It | MEDLINE | ID: mdl-38639122

Over the last decade, several innovative therapeutic options have been developed and marketed for the management of hypercholesterolemia. However, the impossibility of a contextual update of international guidelines and the limits imposed by national regulatory authorities do not allow the use of these treatments in many patients, in particular in those at higher cardiovascular risk. Real-world studies show that the use of lipid-lowering therapies is inadequate even among patients at higher cardiovascular risk, with only 20% achieving recommended low-density lipoprotein cholesterol (LDL-C) levels and the use of combination therapies implemented in only 24% of patients. This review aims to highlight the benefits of an approach based on combination therapy and to propose a therapeutic algorithm that includes oral combination therapy, where necessary also in triple association (statin, ezetimibe and bempedoic acid), as an initial approach based on the most favorable cost-effectiveness ratio for patients at higher cardiovascular risk and the use of injectable anti-proprotein convertase subtilisin/kexin 9 therapies if the recommended LDL-C goal is not achieved.


Anticholesteremic Agents , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Humans , Cholesterol, LDL , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/chemically induced , Risk Factors , Hypercholesterolemia/complications , Hypercholesterolemia/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ezetimibe/therapeutic use , Proprotein Convertase 9 , Heart Disease Risk Factors , Anticholesteremic Agents/therapeutic use
16.
Int J Rheum Dis ; 27(4): e15106, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568054

BACKGROUND: Preclinical and epidemiological studies suggest that proprotein convertase subtilisin/kexin type 9 (PCSK9) had a potential effect on the development of SLE, but it was unclear whether a causal relationship exists. We aimed to investigate the association between genetically proxied inhibition of PCSK9 and the risk of SLE using a two-sample Mendelian randomization (MR) approach. METHODS: Single nucleotide polymorphisms (SNPs) associated with PCSK9 were extracted from pooled data obtained from the Global Lipid Genetics Consortium (GLGC) Genome-wide Association Study (GWAS) related to LDL-c levels, which was used as a proxy for PCSK9 inhibition. Pooled statistics for SLE were obtained from an independent GWAS dataset including 5201 SLE patients and 9066 controls. Inverse variance-weighted random-effects models were used to examine the association between genetically proxied inhibition of PCSK9 and the risk of SLE. MR-Egger, weighted median, weighted mode, Simple mode, and co-location analyses were used as sensitivity analyses to test the robustness of the analyses. RESULTS: Genetically proxied inhibition of PCSK9 was associated with a reduced risk of SLE (OR = 0.51, 95% CI = 0.34 to 0.77, p = .001). This finding was replicated in an earlier GLGC GWAS analysis (OR = 0.59, 95% CI = 0.40 to 0.87, p = .007). Sensitivity analysis ensured that the results were robust. Co-localization analysis did not find evidence of shared causal variation between PCSK9 and SLE. CONCLUSIONS: This Mendelian randomization study showed that PCSK9 was associated with SLE pathogenesis, and its inhibition was associated with a reduced risk of SLE. This study has offered a prospective therapeutic avenue for intervening in the progression of SLE by inhibiting PCSK9 levels.


Genome-Wide Association Study , Lupus Erythematosus, Systemic , Humans , Mendelian Randomization Analysis , Proprotein Convertase 9/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics
17.
J Integr Neurosci ; 23(4): 76, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38682216

BACKGROUND: There are current clinical observations that atorvastatin may promote subdural hematoma resorption. We aimed to assess the causal effects of lipid-lowering agents 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, Proproteinconvertase subtilisin/kexin type 9 (PCSK9) inhibitors and Niemann-Pick C1-like protein 1 (NPC1L1) inhibitors on traumatic subdural hematomas. METHODS: We used genetic instruments to proxy lipid-lowering drug exposure, with genetic instruments being genetic variants within or near low-density lipoprotein (LDL cholesterol)-associated drug target genes. These were analyzed by using a two-sample Mendelian randomization (MR) study. RESULTS: A causal relationship was found between HMGCR inhibitors and traumatic subdural hematoma (Inverse variance weighted (ß = -0.7593341 (Odds Ratio (OR) = 0.4679779), p = 0.008366947 < 0.05)). However, no causal relationship was found between PCSK9 inhibitors and NPC1L1 inhibitors and traumatic subdural hematoma (PCSK9 inhibitors: Inverse variance weighted (ß = 0.23897796 (OR = 1.2699505), p = 0.1126327), NPC1L1 inhibitors: Inverse variance weighted (ß = -0.02118558 (OR = 0.9790373), p = 0.9701686)). Sensitivity analysis of the data revealed good stability of the results. CONCLUSIONS: This two-sample MR study suggests a potential causal relationship between HMGCR inhibition (atorvastatin) and traumatic subdural hemorrhage.


Hydroxymethylglutaryl CoA Reductases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hematoma, Subdural , PCSK9 Inhibitors , Membrane Transport Proteins/genetics , Membrane Proteins/genetics , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/pharmacology , Atorvastatin/adverse effects , Atorvastatin/administration & dosage , Atorvastatin/pharmacology
18.
Phytochemistry ; 222: 114107, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663823

The isolation of previously undescribed 12 compounds from the MeOH extract of Jacobaea vulgaris whole plants is disclosed, comprising 11 dihydrostilbenes (1-11) and one flavanone (12), and eight known compounds (six flavonoids, one dihydrostilbene, and one caffeoylquinic acid). Structural elucidation employed spectroscopic methods, including 1D and 2D NMR spectroscopy, HRESIMS, and ECD calculations. Evaluation of the compounds' effects on PCSK9 and LDLR mRNA expression revealed that compounds 1 and 3 downregulated PCSK9 mRNA while increasing LDLR mRNA expression, suggesting potential cholesterol-lowering properties.


Flavonoids , Stilbenes , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Stilbenes/chemistry , Stilbenes/isolation & purification , Stilbenes/pharmacology , Molecular Structure , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Humans , Receptors, LDL/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
19.
J Transl Med ; 22(1): 404, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689297

BACKGROUND: Ischemic heart disease is one of the leading causes of mortality worldwide, and thus calls for development of more effective therapeutic strategies. This study aimed to identify potential therapeutic targets for coronary heart disease (CHD) and myocardial infarction (MI) by investigating the causal relationship between plasma proteins and these conditions. METHODS: A two-sample Mendelian randomization (MR) study was performed to evaluate more than 1600 plasma proteins for their causal associations with CHD and MI. The MR findings were further confirmed through Bayesian colocalization, Summary-data-based Mendelian Randomization (SMR), and Transcriptome-Wide Association Studies (TWAS) analyses. Further analyses, including enrichment analysis, single-cell analysis, MR analysis of cardiovascular risk factors, phenome-wide Mendelian Randomization (Phe-MR), and protein-protein interaction (PPI) network construction were conducted to verify the roles of selected causal proteins. RESULTS: Thirteen proteins were causally associated with CHD, seven of which were also causal for MI. Among them, FES and PCSK9 were causal proteins for both diseases as determined by several analytical methods. PCSK9 was a risk factor of CHD (OR = 1.25, 95% CI: 1.13-1.38, P = 7.47E-06) and MI (OR = 1.36, 95% CI: 1.21-1.54, P = 2.30E-07), whereas FES was protective against CHD (OR = 0.68, 95% CI: 0.59-0.79, P = 6.40E-07) and MI (OR = 0.65, 95% CI: 0.54-0.77, P = 5.38E-07). Further validation through enrichment and single-cell analysis confirmed the causal effects of these proteins. Moreover, MR analysis of cardiovascular risk factors, Phe-MR, and PPI network provided insights into the potential drug development based on the proteins. CONCLUSIONS: This study investigated the causal pathways associated with CHD and MI, highlighting the protective and risk roles of FES and PCSK9, respectively. FES. Specifically, the results showed that these proteins are promising therapeutic targets for future drug development.


Blood Proteins , Coronary Disease , Mendelian Randomization Analysis , Myocardial Infarction , Proteomics , Humans , Myocardial Infarction/blood , Myocardial Infarction/genetics , Proteomics/methods , Coronary Disease/blood , Coronary Disease/genetics , Blood Proteins/metabolism , Protein Interaction Maps/genetics , Bayes Theorem , Molecular Targeted Therapy , Risk Factors , Genome-Wide Association Study , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood , Proprotein Convertase 9/metabolism
20.
Biomaterials ; 308: 122559, 2024 Jul.
Article En | MEDLINE | ID: mdl-38583366

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Gene Editing , Lipids , Liver , Nanoparticles , Animals , Gene Editing/methods , Liver/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Mice , Plasmids/genetics , Plasmids/administration & dosage , Gene Transfer Techniques , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , DNA/administration & dosage , DNA/genetics , Duodenum/metabolism
...